Show commands: SageMath
Rank
The elliptic curves in class 216225.y have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
Each elliptic curve in class 216225.y has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 216225.2.a.y
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 216225.y
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
|---|---|---|---|---|---|---|---|---|---|
| 216225.y1 | 216225bk1 | \([0, 0, 1, 0, -178932194]\) | \(0\) | \(-13831227342801016875\) | \([]\) | \(2432880\) | \(2.3517\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
| 216225.y2 | 216225bk2 | \([0, 0, 1, 0, 4831169231]\) | \(0\) | \(-10082964732901941301875\) | \([]\) | \(7298640\) | \(2.9010\) | \(-3\) |