Properties

Label 21450.bm
Number of curves $4$
Conductor $21450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 21450.bm have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 21450.bm do not have complex multiplication.

Modular form 21450.2.a.bm

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} + 4 q^{7} - q^{8} + q^{9} + q^{11} + q^{12} + q^{13} - 4 q^{14} + q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 21450.bm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21450.bm1 21450bf4 \([1, 0, 1, -152651, 22943198]\) \(25176685646263969/57915000\) \(904921875000\) \([2]\) \(110592\) \(1.5377\)  
21450.bm2 21450bf2 \([1, 0, 1, -9651, 349198]\) \(6361447449889/294465600\) \(4601025000000\) \([2, 2]\) \(55296\) \(1.1912\)  
21450.bm3 21450bf1 \([1, 0, 1, -1651, -18802]\) \(31824875809/8785920\) \(137280000000\) \([2]\) \(27648\) \(0.84458\) \(\Gamma_0(N)\)-optimal
21450.bm4 21450bf3 \([1, 0, 1, 5349, 1339198]\) \(1083523132511/50179392120\) \(-784053001875000\) \([2]\) \(110592\) \(1.5377\)