Properties

Label 2142.a
Number of curves $1$
Conductor $2142$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2142.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2142.a do not have complex multiplication.

Modular form 2142.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3 q^{5} - q^{7} - q^{8} + 3 q^{10} - q^{11} + q^{13} + q^{14} + q^{16} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 2142.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2142.a1 2142f1 \([1, -1, 0, -19836, 1106896]\) \(-1184052061112257/34349180544\) \(-25040552616576\) \([]\) \(6720\) \(1.3502\) \(\Gamma_0(N)\)-optimal