Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-816516x-71166128\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-816516xz^2-71166128z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-13064259x-4567696450\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-513, 14834)$ | $1.8944941896225789342462506682$ | $\infty$ |
$(-856, 428)$ | $0$ | $2$ |
$(-88, 44)$ | $0$ | $2$ |
Integral points
\( \left(-856, 428\right) \), \( \left(-513, 14834\right) \), \( \left(-513, -14321\right) \), \( \left(-331, 12923\right) \), \( \left(-331, -12592\right) \), \( \left(-88, 44\right) \), \( \left(3176, 169772\right) \), \( \left(3176, -172948\right) \)
Invariants
Conductor: | $N$ | = | \( 2142 \) | = | $2 \cdot 3^{2} \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $32639212884110708736$ | = | $2^{12} \cdot 3^{14} \cdot 7^{8} \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{82582985847542515777}{44772582831427584} \) | = | $2^{-12} \cdot 3^{-8} \cdot 7^{-8} \cdot 13^{3} \cdot 17^{-2} \cdot 457^{3} \cdot 733^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4352879330971272988151976181$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.8859817887630724531175749996$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0972067382550121$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.839043165955957$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.8944941896225789342462506682$ |
|
Real period: | $\Omega$ | ≈ | $0.16932626500501134875493668484$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2^{3}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.5663010016198961736159848845 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.566301002 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.169326 \cdot 1.894494 \cdot 128}{4^2} \\ & \approx 2.566301002\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 61440 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$7$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.48.0.97 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 408 = 2^{3} \cdot 3 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 271 & 0 \\ 0 & 407 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 404 & 405 \end{array}\right),\left(\begin{array}{rr} 73 & 36 \\ 36 & 205 \end{array}\right),\left(\begin{array}{rr} 55 & 6 \\ 186 & 403 \end{array}\right),\left(\begin{array}{rr} 139 & 378 \\ 132 & 301 \end{array}\right),\left(\begin{array}{rr} 401 & 8 \\ 400 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[408])$ is a degree-$30081024$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/408\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 9 = 3^{2} \) |
$3$ | additive | $8$ | \( 119 = 7 \cdot 17 \) |
$7$ | split multiplicative | $8$ | \( 306 = 2 \cdot 3^{2} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 2142.h
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 714.f4, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.1731891456.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.27710263296.5 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.500516630784.12 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.35523982503387.6 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.196571825135013064605696.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | ord | split | ord | ord | nonsplit | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 6 | - | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.