Properties

Label 213444h
Number of curves $2$
Conductor $213444$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 213444h have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 213444h do not have complex multiplication.

Modular form 213444.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} - 4 q^{13} - 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 213444h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
213444.j2 213444h1 \([0, 0, 0, 142296, 23739716]\) \(8192/11\) \(-427862800879024896\) \([]\) \(2592000\) \(2.0689\) \(\Gamma_0(N)\)-optimal
213444.j1 213444h2 \([0, 0, 0, -4126584, 3245036564]\) \(-199794688/1331\) \(-51771398906362012416\) \([]\) \(7776000\) \(2.6182\)