Properties

Label 212415.w
Number of curves $4$
Conductor $212415$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 212415.w have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 212415.w do not have complex multiplication.

Modular form 212415.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{5} - q^{6} + 3 q^{8} + q^{9} + q^{10} - q^{12} + 6 q^{13} - q^{15} - q^{16} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 212415.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
212415.w1 212415t4 \([1, 0, 0, -23875741, -44903895730]\) \(530044731605089/26309115\) \(74711594914086186315\) \([2]\) \(14155776\) \(2.8847\)  
212415.w2 212415t3 \([1, 0, 0, -7590591, 7482033180]\) \(17032120495489/1339001685\) \(3802444570218300148485\) \([2]\) \(14155776\) \(2.8847\)  
212415.w3 212415t2 \([1, 0, 0, -1572166, -622377925]\) \(151334226289/28676025\) \(81433053280059338025\) \([2, 2]\) \(7077888\) \(2.5381\)  
212415.w4 212415t1 \([1, 0, 0, 197959, -57000000]\) \(302111711/669375\) \(-1900864922503719375\) \([2]\) \(3538944\) \(2.1916\) \(\Gamma_0(N)\)-optimal