Show commands:
SageMath
E = EllipticCurve("s1")
E.isogeny_class()
Elliptic curves in class 211600.s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
211600.s1 | 211600r2 | \([0, 1, 0, -24655808, -47130572492]\) | \(109348914285625/1472\) | \(22313864049459200\) | \([]\) | \(5474304\) | \(2.6939\) | |
211600.s2 | 211600r1 | \([0, 1, 0, -321808, -56936172]\) | \(243135625/48668\) | \(737752130135244800\) | \([]\) | \(1824768\) | \(2.1446\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 211600.s have rank \(1\).
Complex multiplication
The elliptic curves in class 211600.s do not have complex multiplication.Modular form 211600.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.