Properties

Label 211600.s
Number of curves $2$
Conductor $211600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 211600.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
211600.s1 211600r2 \([0, 1, 0, -24655808, -47130572492]\) \(109348914285625/1472\) \(22313864049459200\) \([]\) \(5474304\) \(2.6939\)  
211600.s2 211600r1 \([0, 1, 0, -321808, -56936172]\) \(243135625/48668\) \(737752130135244800\) \([]\) \(1824768\) \(2.1446\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 211600.s have rank \(1\).

Complex multiplication

The elliptic curves in class 211600.s do not have complex multiplication.

Modular form 211600.2.a.s

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{7} + q^{9} + 3 q^{11} + q^{13} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.