Properties

Label 210210.bl
Number of curves $4$
Conductor $210210$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 210210.bl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 210210.bl do not have complex multiplication.

Modular form 210210.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8} + q^{9} + q^{10} - q^{11} + q^{12} + q^{13} - q^{15} + q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 210210.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
210210.bl1 210210eb3 \([1, 0, 1, -11939954, 15874730456]\) \(1600086203685293756041/505128060937500\) \(59427811241235937500\) \([2]\) \(11796480\) \(2.7697\)  
210210.bl2 210210eb2 \([1, 0, 1, -847334, 176454632]\) \(571871738885758921/216522396090000\) \(25473643377592410000\) \([2, 2]\) \(5898240\) \(2.4232\)  
210210.bl3 210210eb1 \([1, 0, 1, -373014, -85749464]\) \(48787570816576201/1253457004800\) \(147467963157715200\) \([2]\) \(2949120\) \(2.0766\) \(\Gamma_0(N)\)-optimal
210210.bl4 210210eb4 \([1, 0, 1, 2656166, 1261138232]\) \(17615758461429817079/16032362964918300\) \(-1886191470459673076700\) \([2]\) \(11796480\) \(2.7697\)