Properties

Label 209814cp
Number of curves $4$
Conductor $209814$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 209814cp have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 209814cp do not have complex multiplication.

Modular form 209814.2.a.cp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - 2 q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} + 2 q^{10} - q^{12} + 2 q^{13} - 4 q^{14} + 2 q^{15} + q^{16} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 209814cp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
209814.h4 209814cp1 \([1, 1, 0, -204464471, 879932947029]\) \(22106889268753393/4969545596928\) \(212503613290108702741757952\) \([2]\) \(92897280\) \(3.7647\) \(\Gamma_0(N)\)-optimal
209814.h2 209814cp2 \([1, 1, 0, -3069124951, 65438494456405]\) \(74768347616680342513/5615307472896\) \(240117150441881250845835264\) \([2, 2]\) \(185794560\) \(4.1113\)  
209814.h1 209814cp3 \([1, 1, 0, -49105114071, 4188283572076245]\) \(306234591284035366263793/1727485056\) \(73869292301411268376704\) \([2]\) \(371589120\) \(4.4578\)  
209814.h3 209814cp4 \([1, 1, 0, -2867703511, 74398646646229]\) \(-60992553706117024753/20624795251201152\) \(-881940497126787847882109040768\) \([2]\) \(371589120\) \(4.4578\)