Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-339184x+75871488\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-339184xz^2+75871488z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-5426947x+4850348286\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-672, 336)$ | $0$ | $2$ |
| $(352, -176)$ | $0$ | $2$ |
Integral points
\( \left(-672, 336\right) \), \( \left(352, -176\right) \)
Invariants
| Conductor: | $N$ | = | \( 2090 \) | = | $2 \cdot 5 \cdot 11 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $16147293184000000$ | = | $2^{16} \cdot 5^{6} \cdot 11^{2} \cdot 19^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{4315493878427398863321}{16147293184000000} \) | = | $2^{-16} \cdot 3^{3} \cdot 5^{-6} \cdot 11^{-2} \cdot 19^{-4} \cdot 5426947^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9696199004642630475044535678$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.9696199004642630475044535678$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0393129512309176$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.516288332053204$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.39344270368460908333985613826$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2\cdot( 2 \cdot 3 )\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.1803281110538272500195684148 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.180328111 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.393443 \cdot 1.000000 \cdot 48}{4^2} \\ & \approx 1.180328111\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 18432 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{16}$ | nonsplit multiplicative | 1 | 1 | 16 | 16 |
| $5$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $19$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 220 = 2^{2} \cdot 5 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 217 & 4 \\ 216 & 5 \end{array}\right),\left(\begin{array}{rr} 83 & 2 \\ 18 & 219 \end{array}\right),\left(\begin{array}{rr} 177 & 4 \\ 134 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 111 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[220])$ is a degree-$12672000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/220\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1 \) |
| $3$ | good | $2$ | \( 418 = 2 \cdot 11 \cdot 19 \) |
| $5$ | split multiplicative | $6$ | \( 418 = 2 \cdot 11 \cdot 19 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 190 = 2 \cdot 5 \cdot 19 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 110 = 2 \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 2090.g
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.2342560000.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.484000000.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.66765777396912.5 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 11 | 19 |
|---|---|---|---|---|---|
| Reduction type | nonsplit | ss | split | nonsplit | nonsplit |
| $\lambda$-invariant(s) | 1 | 2,2 | 1 | 0 | 0 |
| $\mu$-invariant(s) | 0 | 0,0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.