Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-x^2-53x-83\) | (homogenize, simplify) | 
| \(y^2z=x^3-x^2z-53xz^2-83z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-4320x-73440\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-4, 7)$ | $1.9530494466198042337003194019$ | $\infty$ | 
Integral points
      
    \((-4,\pm 7)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 20800 \) | = | $2^{6} \cdot 5^{2} \cdot 13$ |  | 
| Discriminant: | $\Delta$ | = | $5324800$ | = | $2^{14} \cdot 5^{2} \cdot 13 $ |  | 
| j-invariant: | $j$ | = | \( \frac{40960}{13} \) | = | $2^{13} \cdot 5 \cdot 13^{-1}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.0054619960708011909125760107985$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0823733587964207809994733747$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.7343111448189168$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.36789484145529$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.9530494466198042337003194019$ |  | 
| Real period: | $\Omega$ | ≈ | $1.8108702994262146981841368017$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $3.5367192361946078124321185327 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 3.536719236 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.810870 \cdot 1.953049 \cdot 1}{1^2} \\ & \approx 3.536719236\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2304 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | 1 | 6 | 14 | 0 | 
| $5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 | 
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 26.2.0.a.1, level \( 26 = 2 \cdot 13 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 25 & 2 \\ 24 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 15 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 25 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[26])$ is a degree-$78624$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/26\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 325 = 5^{2} \cdot 13 \) | 
| $5$ | additive | $10$ | \( 832 = 2^{6} \cdot 13 \) | 
| $13$ | nonsplit multiplicative | $14$ | \( 1600 = 2^{6} \cdot 5^{2} \) | 
Isogenies
This curve has no rational isogenies. Its isogeny class 20800i consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 1300c1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $3$ | 3.3.1300.1 | \(\Z/2\Z\) | not in database | 
| $6$ | 6.6.21970000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/3\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | add | ord | ord | nonsplit | ord | ss | ord | ord | ord | ord | ord | ord | ss | 
| $\lambda$-invariant(s) | - | 3 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 
| $\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
