Properties

Label 207936ds
Number of curves $2$
Conductor $207936$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ds1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 207936ds have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 207936ds do not have complex multiplication.

Modular form 207936.2.a.ds

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{11} - 2 q^{13} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 207936ds

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
207936.dz1 207936ds1 \([0, 0, 0, -21660, -768208]\) \(54000/19\) \(395420253437952\) \([2]\) \(368640\) \(1.5022\) \(\Gamma_0(N)\)-optimal
207936.dz2 207936ds2 \([0, 0, 0, 64980, -5377456]\) \(364500/361\) \(-30051939261284352\) \([2]\) \(737280\) \(1.8488\)