Properties

Label 207368x
Number of curves $2$
Conductor $207368$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 207368x have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 207368x do not have complex multiplication.

Modular form 207368.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{9} - 6 q^{11} + 2 q^{13} + 6 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 207368x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
207368.p2 207368x1 \([0, 0, 0, 129605, 25039686]\) \(13500/23\) \(-410188092430441472\) \([2]\) \(1824768\) \(2.0646\) \(\Gamma_0(N)\)-optimal
207368.p1 207368x2 \([0, 0, 0, -907235, 258743422]\) \(2315250/529\) \(18868652251800307712\) \([2]\) \(3649536\) \(2.4112\)