Properties

Label 206400dx
Number of curves $1$
Conductor $206400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 206400dx1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 206400dx do not have complex multiplication.

Modular form 206400.2.a.dx

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{7} + q^{9} + 4 q^{11} - 3 q^{13} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 206400dx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
206400.w1 206400dx1 \([0, -1, 0, 192367923967, 214484193764363937]\) \(192203697666261893287480365959/4963160303408775168000000000\) \(-20329104602762343088128000000000000000\) \([]\) \(4923555840\) \(5.8389\) \(\Gamma_0(N)\)-optimal