Properties

Label 206310.n
Number of curves $4$
Conductor $206310$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 206310.n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 206310.n do not have complex multiplication.

Modular form 206310.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} - q^{12} - q^{13} - q^{15} + q^{16} + 6 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 206310.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
206310.n1 206310ce3 \([1, 1, 0, -255782, 49675986]\) \(12501706118329/2570490\) \(380524772315610\) \([2]\) \(1576960\) \(1.7948\)  
206310.n2 206310ce2 \([1, 1, 0, -17732, 590076]\) \(4165509529/1368900\) \(202646328452100\) \([2, 2]\) \(788480\) \(1.4482\)  
206310.n3 206310ce1 \([1, 1, 0, -7152, -228816]\) \(273359449/9360\) \(1385615921040\) \([2]\) \(394240\) \(1.1016\) \(\Gamma_0(N)\)-optimal
206310.n4 206310ce4 \([1, 1, 0, 51038, 4124854]\) \(99317171591/106616250\) \(-15783031350596250\) \([2]\) \(1576960\) \(1.7948\)