Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2+xy=x^3+x^2-2957068x-1958454593\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z+xyz=x^3+x^2z-2957068xz^2-1958454593z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-3832360803x-91316172082338\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(10953904529224693/61780085136, 1145034124948846243578881/15355810841063616)$ | $33.327140675700811822600883516$ | $\infty$ | 
| $(-3973/4, 3973/8)$ | $0$ | $2$ | 
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 20535 \) | = | $3 \cdot 5 \cdot 37^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $1039119195645$ | = | $3^{4} \cdot 5 \cdot 37^{6} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{1114544804970241}{405} \) | = | $3^{-4} \cdot 5^{-1} \cdot 103681^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0963285647992137441576834598$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.29086960847710152197363562429$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.0735374703334082$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.671034873512843$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $33.327140675700811822600883516$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.11512886088814111875268967021$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot2 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $3.8369157426522681707557509241 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 3.836915743 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.115129 \cdot 33.327141 \cdot 4}{2^2} \\ & \approx 3.836915743\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 193536 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $37$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 16.48.0.121 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17760 = 2^{5} \cdot 3 \cdot 5 \cdot 37 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 4663 & 12506 \\ 4662 & 4811 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 6661 & 15392 \\ 14356 & 15393 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 112 & 12025 \\ 11063 & 4626 \end{array}\right),\left(\begin{array}{rr} 17729 & 32 \\ 17728 & 33 \end{array}\right),\left(\begin{array}{rr} 479 & 0 \\ 0 & 17759 \end{array}\right),\left(\begin{array}{rr} 14431 & 15392 \\ 9990 & 1 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 15198 & 15755 \end{array}\right)$.
The torsion field $K:=\Q(E[17760])$ is a degree-$21495262740480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | good | $2$ | \( 6845 = 5 \cdot 37^{2} \) | 
| $3$ | nonsplit multiplicative | $4$ | \( 6845 = 5 \cdot 37^{2} \) | 
| $5$ | nonsplit multiplicative | $6$ | \( 4107 = 3 \cdot 37^{2} \) | 
| $37$ | additive | $686$ | \( 15 = 3 \cdot 5 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 20535a
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15a5, its twist by $37$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-185}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-37}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{5}, \sqrt{-37})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{2}, \sqrt{-37})\) | \(\Z/8\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{10}, \sqrt{-37})\) | \(\Z/8\Z\) | not in database | 
| $8$ | 8.4.7496644000000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.1919140864000000.21 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.76765634560000.35 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/16\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/16\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | nonsplit | nonsplit | ss | ord | ord | ord | ord | ss | ord | ss | add | ord | ord | ord | 
| $\lambda$-invariant(s) | 2 | 5 | 1 | 1,1 | 3 | 3 | 1 | 3 | 1,1 | 1 | 1,1 | - | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 3 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | - | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.