Properties

Label 20475r
Number of curves $4$
Conductor $20475$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20475r have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20475r do not have complex multiplication.

Modular form 20475.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{7} - 3 q^{8} - q^{13} - q^{14} - q^{16} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 20475r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20475.v4 20475r1 \([1, -1, 0, 1458, -23009]\) \(30080231/36855\) \(-419801484375\) \([2]\) \(18432\) \(0.91638\) \(\Gamma_0(N)\)-optimal
20475.v3 20475r2 \([1, -1, 0, -8667, -215384]\) \(6321363049/1863225\) \(21223297265625\) \([2, 2]\) \(36864\) \(1.2630\)  
20475.v1 20475r3 \([1, -1, 0, -126792, -17343509]\) \(19790357598649/2998905\) \(34159402265625\) \([2]\) \(73728\) \(1.6095\)  
20475.v2 20475r4 \([1, -1, 0, -52542, 4479241]\) \(1408317602329/58524375\) \(666629208984375\) \([2]\) \(73728\) \(1.6095\)