Properties

Label 20475.t
Number of curves $1$
Conductor $20475$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 20475.t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20475.t do not have complex multiplication.

Modular form 20475.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{7} - 3 q^{8} - 4 q^{11} + q^{13} - q^{14} - q^{16} - 5 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 20475.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20475.t1 20475c1 \([1, -1, 0, -9492, -1450459]\) \(-492075/4459\) \(-857094697265625\) \([]\) \(77760\) \(1.5479\) \(\Gamma_0(N)\)-optimal