Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-x^2-6816x-512172\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-x^2z-6816xz^2-512172z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-8833968x-24001891056\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(477, 10224)$ | $0.71853142836538989511954296103$ | $\infty$ |
| $(114, 423)$ | $2.1566257572300223354619388281$ | $\infty$ |
Integral points
\( \left(114, 423\right) \), \( \left(114, -424\right) \), \( \left(136, 1028\right) \), \( \left(136, -1029\right) \), \( \left(139, 1098\right) \), \( \left(139, -1099\right) \), \( \left(477, 10224\right) \), \( \left(477, -10225\right) \), \( \left(4107, 263114\right) \), \( \left(4107, -263115\right) \), \( \left(502407, 356109110\right) \), \( \left(502407, -356109111\right) \)
Invariants
| Conductor: | $N$ | = | \( 20449 \) | = | $11^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-94060852367339$ | = | $-1 \cdot 11^{7} \cdot 13^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{4096}{11} \) | = | $-1 \cdot 2^{12} \cdot 11^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3686935177945003880683215817$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1127287973354532519893939281$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8254556483942886$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.012298569698156$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.5437517669756844112582557389$ |
|
| Real period: | $\Omega$ | ≈ | $0.24398474799607828621747205263$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $3.0132150866725034450161878054 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.013215087 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.243985 \cdot 1.543752 \cdot 8}{1^2} \\ & \approx 3.013215087\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 51840 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $11$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $13$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5B.4.1 | 25.60.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7150 = 2 \cdot 5^{2} \cdot 11 \cdot 13 \), index $1200$, genus $37$, and generators
$\left(\begin{array}{rr} 1649 & 0 \\ 0 & 7149 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7101 & 50 \\ 7100 & 51 \end{array}\right),\left(\begin{array}{rr} 38 & 41 \\ 4591 & 4389 \end{array}\right),\left(\begin{array}{rr} 584 & 6045 \\ 6565 & 2014 \end{array}\right),\left(\begin{array}{rr} 5266 & 6045 \\ 377 & 287 \end{array}\right)$.
The torsion field $K:=\Q(E[7150])$ is a degree-$518918400000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7150\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $11$ | additive | $72$ | \( 169 = 13^{2} \) |
| $13$ | additive | $86$ | \( 121 = 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5 and 25.
Its isogeny class 20449.a
consists of 3 curves linked by isogenies of
degrees dividing 25.
Twists
The minimal quadratic twist of this elliptic curve is 11.a3, its twist by $-143$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-143}) \) | \(\Z/5\Z\) | not in database |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.46787312.1 | \(\Z/10\Z\) | not in database |
| $8$ | 8.2.110656849987827.2 | \(\Z/3\Z\) | not in database |
| $10$ | 10.0.875489472034463.1 | \(\Z/25\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | 12.0.2189052564185344.1 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
| $16$ | deg 16 | \(\Z/15\Z\) | not in database |
| $20$ | 20.4.23391168690282677348274526927764892578125.1 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | ord | ord | add | add | ord | ss | ord | ss | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | ? | 2 | 2 | 2 | - | - | 2 | 2,2 | 2 | 2,2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | ? | 0 | 0 | 0 | - | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.