Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-11013033x-14069723562\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-11013033xz^2-14069723562z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-892055700x-10254152309625\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-123543/64, 103125/512)$ | $4.7093338442972858541852551588$ | $\infty$ |
| $(-1902, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1902, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 20400 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $14292856582031250000$ | = | $2^{4} \cdot 3^{16} \cdot 5^{13} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( \frac{590887175978458660864}{57171426328125} \) | = | $2^{14} \cdot 3^{-16} \cdot 5^{-7} \cdot 17^{-1} \cdot 19^{3} \cdot 17389^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7115121327788056029803464331$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6757441163751069792075560593$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0709291492942772$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.072317938338011$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.7093338442972858541852551588$ |
|
| Real period: | $\Omega$ | ≈ | $0.082875342765150511990575816395$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 1\cdot2^{4}\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.2446025046665842709756812379 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.244602505 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.082875 \cdot 4.709334 \cdot 64}{2^2} \\ & \approx 6.244602505\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 645120 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
| $3$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
| $5$ | $4$ | $I_{7}^{*}$ | additive | 1 | 2 | 13 | 7 |
| $17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 680 = 2^{3} \cdot 5 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 264 & 677 \\ 675 & 678 \end{array}\right),\left(\begin{array}{rr} 341 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 673 & 8 \\ 672 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 28 & 75 \end{array}\right),\left(\begin{array}{rr} 86 & 1 \\ 103 & 4 \end{array}\right),\left(\begin{array}{rr} 503 & 674 \\ 658 & 661 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right)$.
The torsion field $K:=\Q(E[680])$ is a degree-$1203240960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/680\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 425 = 5^{2} \cdot 17 \) |
| $3$ | split multiplicative | $4$ | \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \) |
| $5$ | additive | $18$ | \( 816 = 2^{4} \cdot 3 \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 20400cw
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1020f1, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{85}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.5440.1 | \(\Z/4\Z\) | not in database |
| $8$ | 8.4.1544804416000000.9 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.213813760000.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | add | ss | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.