Properties

Label 203840.cb
Number of curves $3$
Conductor $203840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 203840.cb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 203840.cb do not have complex multiplication.

Modular form 203840.2.a.cb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{9} - 3 q^{11} + q^{13} - q^{15} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 203840.cb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
203840.cb1 203840w3 \([0, -1, 0, -158378027425, -25728325474706623]\) \(-14245586655234650511684983641/1028175397808386133196800\) \(-31709936320973064158437788404940800\) \([]\) \(1755758592\) \(5.3698\)  
203840.cb2 203840w1 \([0, -1, 0, -1814011425, 32246069962177]\) \(-21405018343206000779641/2177246093750000000\) \(-67148402048000000000000000000\) \([]\) \(195084288\) \(4.2712\) \(\Gamma_0(N)\)-optimal
203840.cb3 203840w2 \([0, -1, 0, 11170988575, -29580807037823]\) \(4998853083179567995470359/2905108466204672000000\) \(-89596390523669959443218432000000\) \([]\) \(585252864\) \(4.8205\)