Properties

Label 20280.o
Number of curves $4$
Conductor $20280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20280.o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20280.o do not have complex multiplication.

Modular form 20280.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 20280.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20280.o1 20280g4 \([0, -1, 0, -1300680, 570015900]\) \(49235161015876/137109375\) \(677683983600000000\) \([4]\) \(258048\) \(2.2940\)  
20280.o2 20280g3 \([0, -1, 0, -1212800, -511751748]\) \(39914580075556/172718325\) \(853686646348723200\) \([2]\) \(258048\) \(2.2940\)  
20280.o3 20280g2 \([0, -1, 0, -114300, 1028052]\) \(133649126224/77000625\) \(95146831297440000\) \([2, 2]\) \(129024\) \(1.9474\)  
20280.o4 20280g1 \([0, -1, 0, 28505, 114100]\) \(33165879296/19278675\) \(-1488871711969200\) \([2]\) \(64512\) \(1.6008\) \(\Gamma_0(N)\)-optimal