y 2 = x 3 − x 2 + 14140 x + 452100 y^2=x^3-x^2+14140x+452100 y 2 = x 3 − x 2 + 1 4 1 4 0 x + 4 5 2 1 0 0
(homogenize , simplify )
y 2 z = x 3 − x 2 z + 14140 x z 2 + 452100 z 3 y^2z=x^3-x^2z+14140xz^2+452100z^3 y 2 z = x 3 − x 2 z + 1 4 1 4 0 x z 2 + 4 5 2 1 0 0 z 3
(dehomogenize , simplify )
y 2 = x 3 + 1145313 x + 333016866 y^2=x^3+1145313x+333016866 y 2 = x 3 + 1 1 4 5 3 1 3 x + 3 3 3 0 1 6 8 6 6
(homogenize , minimize )
sage: E = EllipticCurve([0, -1, 0, 14140, 452100])
gp: E = ellinit([0, -1, 0, 14140, 452100])
magma: E := EllipticCurve([0, -1, 0, 14140, 452100]);
oscar: E = elliptic_curve([0, -1, 0, 14140, 452100])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 4 Z \Z \oplus \Z/{4}\Z Z ⊕ Z / 4 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 60 , 1230 ) (60, 1230) ( 6 0 , 1 2 3 0 ) 3.0535727960683967941983451246 3.0535727960683967941983451246 3 . 0 5 3 5 7 2 7 9 6 0 6 8 3 9 6 7 9 4 1 9 8 3 4 5 1 2 4 6 ∞ \infty ∞
( 100 , 1690 ) (100, 1690) ( 1 0 0 , 1 6 9 0 ) 0 0 0 4 4 4
( − 30 , 0 ) \left(-30, 0\right) ( − 3 0 , 0 ) , ( 60 , ± 1230 ) (60,\pm 1230) ( 6 0 , ± 1 2 3 0 ) , ( 100 , ± 1690 ) (100,\pm 1690) ( 1 0 0 , ± 1 6 9 0 ) , ( 5170 , ± 371800 ) (5170,\pm 371800) ( 5 1 7 0 , ± 3 7 1 8 0 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
20280 20280 2 0 2 8 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 1 3 2 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} 2 3 ⋅ 3 ⋅ 5 ⋅ 1 3 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 271073593440000 -271073593440000 − 2 7 1 0 7 3 5 9 3 4 4 0 0 0 0 = − 1 ⋅ 2 8 ⋅ 3 3 ⋅ 5 4 ⋅ 1 3 7 -1 \cdot 2^{8} \cdot 3^{3} \cdot 5^{4} \cdot 13^{7} − 1 ⋅ 2 8 ⋅ 3 3 ⋅ 5 4 ⋅ 1 3 7
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
253012016 219375 \frac{253012016}{219375} 2 1 9 3 7 5 2 5 3 0 1 2 0 1 6 = 2 4 ⋅ 3 − 3 ⋅ 5 − 4 ⋅ 1 3 − 1 ⋅ 25 1 3 2^{4} \cdot 3^{-3} \cdot 5^{-4} \cdot 13^{-1} \cdot 251^{3} 2 4 ⋅ 3 − 3 ⋅ 5 − 4 ⋅ 1 3 − 1 ⋅ 2 5 1 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.4569841831002030531875531321 1.4569841831002030531875531321 1 . 4 5 6 9 8 4 1 8 3 1 0 0 2 0 3 0 5 3 1 8 7 5 5 3 1 3 2 1
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.28758861600386218778401200299 -0.28758861600386218778401200299 − 0 . 2 8 7 5 8 8 6 1 6 0 0 3 8 6 2 1 8 7 7 8 4 0 1 2 0 0 2 9 9
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.8738745964123275 0.8738745964123275 0 . 8 7 3 8 7 4 5 9 6 4 1 2 3 2 7 5
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.06193759343076 4.06193759343076 4 . 0 6 1 9 3 7 5 9 3 4 3 0 7 6
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 3.0535727960683967941983451246 3.0535727960683967941983451246 3 . 0 5 3 5 7 2 7 9 6 0 6 8 3 9 6 7 9 4 1 9 8 3 4 5 1 2 4 6
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.35785295150122944638876533255 0.35785295150122944638876533255 0 . 3 5 7 8 5 2 9 5 1 5 0 1 2 2 9 4 4 6 3 8 8 7 6 5 3 3 2 5 5
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 64 64 6 4
= 2 2 ⋅ 1 ⋅ 2 2 ⋅ 2 2 2^{2}\cdot1\cdot2^{2}\cdot2^{2} 2 2 ⋅ 1 ⋅ 2 2 ⋅ 2 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 4 4 4
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 4.3709201507877503708958969157 4.3709201507877503708958969157 4 . 3 7 0 9 2 0 1 5 0 7 8 7 7 5 0 3 7 0 8 9 5 8 9 6 9 1 5 7
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
4.370920151 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.357853 ⋅ 3.053573 ⋅ 64 4 2 ≈ 4.370920151 \begin{aligned} 4.370920151 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.357853 \cdot 3.053573 \cdot 64}{4^2} \\ & \approx 4.370920151\end{aligned} 4 . 3 7 0 9 2 0 1 5 1 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 4 2 1 ⋅ 0 . 3 5 7 8 5 3 ⋅ 3 . 0 5 3 5 7 3 ⋅ 6 4 ≈ 4 . 3 7 0 9 2 0 1 5 1
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, -1, 0, 14140, 452100]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, -1, 0, 14140, 452100]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
20280.2.a.n
q − q 3 + q 5 + q 9 − 4 q 11 − q 15 − 2 q 17 + 4 q 19 + O ( q 20 ) q - q^{3} + q^{5} + q^{9} - 4 q^{11} - q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20}) q − q 3 + q 5 + q 9 − 4 q 1 1 − q 1 5 − 2 q 1 7 + 4 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 8, 0, 1], [7, 6, 1554, 1555], [1, 0, 8, 1], [593, 588, 590, 1367], [203, 198, 1370, 587], [937, 8, 628, 33], [712, 1557, 835, 1558], [1, 4, 4, 17], [1553, 8, 1552, 9], [524, 1, 1063, 6]]
GL(2,Integers(1560)).subgroup(gens)
magma: Gens := [[1, 8, 0, 1], [7, 6, 1554, 1555], [1, 0, 8, 1], [593, 588, 590, 1367], [203, 198, 1370, 587], [937, 8, 628, 33], [712, 1557, 835, 1558], [1, 4, 4, 17], [1553, 8, 1552, 9], [524, 1, 1063, 6]];
sub<GL(2,Integers(1560))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 1560 = 2 3 ⋅ 3 ⋅ 5 ⋅ 13 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 1 5 6 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 1 3 , index 48 48 4 8 , genus 0 0 0 , and generators
( 1 8 0 1 ) , ( 7 6 1554 1555 ) , ( 1 0 8 1 ) , ( 593 588 590 1367 ) , ( 203 198 1370 587 ) , ( 937 8 628 33 ) , ( 712 1557 835 1558 ) , ( 1 4 4 17 ) , ( 1553 8 1552 9 ) , ( 524 1 1063 6 ) \left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
7 & 6 \\
1554 & 1555
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
593 & 588 \\
590 & 1367
\end{array}\right),\left(\begin{array}{rr}
203 & 198 \\
1370 & 587
\end{array}\right),\left(\begin{array}{rr}
937 & 8 \\
628 & 33
\end{array}\right),\left(\begin{array}{rr}
712 & 1557 \\
835 & 1558
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
4 & 17
\end{array}\right),\left(\begin{array}{rr}
1553 & 8 \\
1552 & 9
\end{array}\right),\left(\begin{array}{rr}
524 & 1 \\
1063 & 6
\end{array}\right) ( 1 0 8 1 ) , ( 7 1 5 5 4 6 1 5 5 5 ) , ( 1 8 0 1 ) , ( 5 9 3 5 9 0 5 8 8 1 3 6 7 ) , ( 2 0 3 1 3 7 0 1 9 8 5 8 7 ) , ( 9 3 7 6 2 8 8 3 3 ) , ( 7 1 2 8 3 5 1 5 5 7 1 5 5 8 ) , ( 1 4 4 1 7 ) , ( 1 5 5 3 1 5 5 2 8 9 ) , ( 5 2 4 1 0 6 3 1 6 ) .
The torsion field K : = Q ( E [ 1560 ] ) K:=\Q(E[1560]) K : = Q ( E [ 1 5 6 0 ] ) is a degree-19322634240 19322634240 1 9 3 2 2 6 3 4 2 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 1560 Z ) \GL_2(\Z/1560\Z) GL 2 ( Z / 1 5 6 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
507 = 3 ⋅ 1 3 2 507 = 3 \cdot 13^{2} 5 0 7 = 3 ⋅ 1 3 2
3 3 3
nonsplit multiplicative
4 4 4
6760 = 2 3 ⋅ 5 ⋅ 1 3 2 6760 = 2^{3} \cdot 5 \cdot 13^{2} 6 7 6 0 = 2 3 ⋅ 5 ⋅ 1 3 2
5 5 5
split multiplicative
6 6 6
4056 = 2 3 ⋅ 3 ⋅ 1 3 2 4056 = 2^{3} \cdot 3 \cdot 13^{2} 4 0 5 6 = 2 3 ⋅ 3 ⋅ 1 3 2
13 13 1 3
additive
98 98 9 8
120 = 2 3 ⋅ 3 ⋅ 5 120 = 2^{3} \cdot 3 \cdot 5 1 2 0 = 2 3 ⋅ 3 ⋅ 5
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2 and 4.
Its isogeny class 20280.n
consists of 4 curves linked by isogenies of
degrees dividing 4.
The minimal quadratic twist of this elliptic curve is
1560.b4 , its twist by 13 13 1 3 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 4 Z \cong \Z/{4}\Z ≅ Z / 4 Z
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
7
11
17
23
29
31
37
41
43
47
53
59
61
67
71
79
83
89
97