Properties

Label 202675bg
Number of curves $1$
Conductor $202675$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 202675bg1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(11\)\(1\)
\(67\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 202675bg do not have complex multiplication.

Modular form 202675.2.a.bg

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 4 q^{6} - 4 q^{7} + q^{9} - 4 q^{12} - 6 q^{13} - 8 q^{14} - 4 q^{16} + 7 q^{17} + 2 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 202675bg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202675.bf1 202675bg1 \([0, 1, 1, 11092, 3579219]\) \(45056/1675\) \(-5610173838671875\) \([]\) \(2737152\) \(1.7018\) \(\Gamma_0(N)\)-optimal