Show commands: SageMath
Rank
The elliptic curves in class 201600hn have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 201600hn do not have complex multiplication.Modular form 201600.2.a.hn
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 201600hn
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 201600.iw1 | 201600hn1 | \([0, 0, 0, -3450, 33500]\) | \(1557376/735\) | \(2143260000000\) | \([2]\) | \(245760\) | \(1.0603\) | \(\Gamma_0(N)\)-optimal |
| 201600.iw2 | 201600hn2 | \([0, 0, 0, 12300, 254000]\) | \(2205472/1575\) | \(-146966400000000\) | \([2]\) | \(491520\) | \(1.4069\) |