Properties

Label 201600hn
Number of curves $2$
Conductor $201600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 201600hn have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 201600hn do not have complex multiplication.

Modular form 201600.2.a.hn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + 4 q^{11} - 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 201600hn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
201600.iw1 201600hn1 \([0, 0, 0, -3450, 33500]\) \(1557376/735\) \(2143260000000\) \([2]\) \(245760\) \(1.0603\) \(\Gamma_0(N)\)-optimal
201600.iw2 201600hn2 \([0, 0, 0, 12300, 254000]\) \(2205472/1575\) \(-146966400000000\) \([2]\) \(491520\) \(1.4069\)