Properties

Label 20160.bw
Number of curves $4$
Conductor $20160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20160.bw have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20160.bw do not have complex multiplication.

Modular form 20160.2.a.bw

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 20160.bw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20160.bw1 20160bm3 \([0, 0, 0, -23628, -1395088]\) \(15267472418/36015\) \(3441286840320\) \([2]\) \(32768\) \(1.2855\)  
20160.bw2 20160bm2 \([0, 0, 0, -2028, -4048]\) \(19307236/11025\) \(526727577600\) \([2, 2]\) \(16384\) \(0.93893\)  
20160.bw3 20160bm1 \([0, 0, 0, -1308, 18128]\) \(20720464/105\) \(1254113280\) \([2]\) \(8192\) \(0.59236\) \(\Gamma_0(N)\)-optimal
20160.bw4 20160bm4 \([0, 0, 0, 8052, -32272]\) \(604223422/354375\) \(-33861058560000\) \([2]\) \(32768\) \(1.2855\)