Properties

Label 200376.bb
Number of curves $2$
Conductor $200376$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 200376.bb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 200376.bb do not have complex multiplication.

Modular form 200376.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 2 q^{13} + 8 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 200376.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
200376.bb1 200376bk2 \([0, 0, 0, -50800035, 139361910446]\) \(10963069081334500/1156923\) \(1529988093029772288\) \([2]\) \(10321920\) \(2.9176\)  
200376.bb2 200376bk1 \([0, 0, 0, -3167175, 2188800218]\) \(-10627137250000/110008287\) \(-36370477820175130368\) \([2]\) \(5160960\) \(2.5710\) \(\Gamma_0(N)\)-optimal