Properties

Label 19a
Number of curves 33
Conductor 1919
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 19a have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
19191T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+2T2 1 + 2 T^{2} 1.2.a
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
55 13T+5T2 1 - 3 T + 5 T^{2} 1.5.ad
77 1+T+7T2 1 + T + 7 T^{2} 1.7.b
1111 13T+11T2 1 - 3 T + 11 T^{2} 1.11.ad
1313 1+4T+13T2 1 + 4 T + 13 T^{2} 1.13.e
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19a do not have complex multiplication.

Modular form 19.2.a.a

Copy content sage:E.q_eigenform(10)
 
q2q32q4+3q5q7+q9+3q11+4q124q136q15+4q163q17+q19+O(q20)q - 2 q^{3} - 2 q^{4} + 3 q^{5} - q^{7} + q^{9} + 3 q^{11} + 4 q^{12} - 4 q^{13} - 6 q^{15} + 4 q^{16} - 3 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(133319391)\left(\begin{array}{rrr} 1 & 3 & 3 \\ 3 & 1 & 9 \\ 3 & 9 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 19a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19.a2 19a1 [0,1,1,9,15][0, 1, 1, -9, -15] 89915392/6859-89915392/6859 6859-6859 [3][3] 11 0.51587-0.51587 Γ0(N)\Gamma_0(N)-optimal
19.a1 19a2 [0,1,1,769,8470][0, 1, 1, -769, -8470] 50357871050752/19-50357871050752/19 19-19 [][] 33 0.0334390.033439  
19.a3 19a3 [0,1,1,1,0][0, 1, 1, 1, 0] 32768/1932768/19 19-19 [3][3] 33 1.0652-1.0652