sage:E = EllipticCurve("a1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 19a have
rank 0.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 19 | 1−T |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 2 |
1+2T2 |
1.2.a
|
| 3 |
1+2T+3T2 |
1.3.c
|
| 5 |
1−3T+5T2 |
1.5.ad
|
| 7 |
1+T+7T2 |
1.7.b
|
| 11 |
1−3T+11T2 |
1.11.ad
|
| 13 |
1+4T+13T2 |
1.13.e
|
| 17 |
1+3T+17T2 |
1.17.d
|
| 23 |
1+23T2 |
1.23.a
|
| 29 |
1−6T+29T2 |
1.29.ag
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 19a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎛133319391⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 19a
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 19.a2 |
19a1 |
[0,1,1,−9,−15] |
−89915392/6859 |
−6859 |
[3] |
1 |
−0.51587
|
Γ0(N)-optimal |
| 19.a1 |
19a2 |
[0,1,1,−769,−8470] |
−50357871050752/19 |
−19 |
[] |
3 |
0.033439
|
|
| 19.a3 |
19a3 |
[0,1,1,1,0] |
32768/19 |
−19 |
[3] |
3 |
−1.0652
|
|