Properties

Label 19950ce
Number of curves $4$
Conductor $19950$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ce1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 19950ce have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19950ce do not have complex multiplication.

Modular form 19950.2.a.ce

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + q^{7} + q^{8} + q^{9} + 4 q^{11} - q^{12} + 2 q^{13} + q^{14} + q^{16} + 2 q^{17} + q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 19950ce

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19950.cn4 19950ce1 \([1, 1, 1, 86537, 101272781]\) \(4586790226340951/286015269335040\) \(-4468988583360000000\) \([4]\) \(387072\) \(2.2583\) \(\Gamma_0(N)\)-optimal
19950.cn3 19950ce2 \([1, 1, 1, -2801463, 1735880781]\) \(155617476551393929129/6633105589454400\) \(103642274835225000000\) \([2, 2]\) \(774144\) \(2.6048\)  
19950.cn2 19950ce3 \([1, 1, 1, -7456463, -5535229219]\) \(2934284984699764805929/851931751022747640\) \(13311433609730431875000\) \([2]\) \(1548288\) \(2.9514\)  
19950.cn1 19950ce4 \([1, 1, 1, -44354463, 113679662781]\) \(617611911727813844500009/1197723879765000\) \(18714435621328125000\) \([2]\) \(1548288\) \(2.9514\)