Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-15291763x-23022464719\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-15291763xz^2-23022464719z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-19818124875x-1073838842048250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-2261, 822)$ | $2.6537958706487938209305704031$ | $\infty$ |
$(4515, -2258)$ | $0$ | $2$ |
Integral points
\( \left(-2261, 1438\right) \), \( \left(-2261, 822\right) \), \( \left(4515, -2258\right) \)
Invariants
Conductor: | $N$ | = | \( 19950 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $2998960914432000000$ | = | $2^{36} \cdot 3 \cdot 5^{6} \cdot 7^{2} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{25309080274342544331625}{191933498523648} \) | = | $2^{-36} \cdot 3^{-1} \cdot 5^{3} \cdot 7^{-2} \cdot 19^{-1} \cdot 43^{3} \cdot 136559^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7203786019370095386998569494$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.9156596457199593513994772828$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0385639997055625$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.185453390361827$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.6537958706487938209305704031$ |
|
Real period: | $\Omega$ | ≈ | $0.076345837312338175218393283061$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 144 $ = $ ( 2^{2} \cdot 3^{2} )\cdot1\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.2938256408254756498372653341 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.293825641 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.076346 \cdot 2.653796 \cdot 144}{2^2} \\ & \approx 7.293825641\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1492992 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $36$ | $I_{36}$ | split multiplicative | -1 | 1 | 36 | 36 |
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 23940 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 11971 & 14400 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 14363 & 0 \\ 0 & 23939 \end{array}\right),\left(\begin{array}{rr} 16441 & 14400 \\ 19830 & 9841 \end{array}\right),\left(\begin{array}{rr} 23905 & 36 \\ 23904 & 37 \end{array}\right),\left(\begin{array}{rr} 17056 & 4815 \\ 5665 & 22286 \end{array}\right),\left(\begin{array}{rr} 4036 & 9585 \\ 22255 & 4966 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 3240 & 6139 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.
The torsion field $K:=\Q(E[23940])$ is a degree-$51468809011200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/23940\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1425 = 3 \cdot 5^{2} \cdot 19 \) |
$3$ | nonsplit multiplicative | $4$ | \( 3325 = 5^{2} \cdot 7 \cdot 19 \) |
$5$ | additive | $14$ | \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \) |
$7$ | nonsplit multiplicative | $8$ | \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 19950bw
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 798e5, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{57}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.4.1117200.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-15}, \sqrt{57})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.2309559334291125.2 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.769853111430375.4 | \(\Z/18\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.4055193344160000.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.11233222560000.17 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/18\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | add | nonsplit | ord | ord | ss | split | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 4 | 1 | - | 1 | 1 | 1 | 1,3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 2 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.