Properties

Label 198900q
Number of curves $1$
Conductor $198900$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198900q1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198900q do not have complex multiplication.

Modular form 198900.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{7} - 3 q^{11} - q^{13} - q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198900q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198900.cf1 198900q1 \([0, 0, 0, -368625, 86903125]\) \(-243164694272/2490891\) \(-56745610593750000\) \([]\) \(1751040\) \(2.0328\) \(\Gamma_0(N)\)-optimal