Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 0, -3707437554, 86888738522628]); // or

magma: E := EllipticCurve("19890r6");

sage: E = EllipticCurve([1, -1, 0, -3707437554, 86888738522628]) # or

sage: E = EllipticCurve("19890r6")

gp: E = ellinit([1, -1, 0, -3707437554, 86888738522628]) \\ or

gp: E = ellinit("19890r6")

$$y^2 + x y = x^{3} - x^{2} - 3707437554 x + 86888738522628$$

## Mordell-Weil group structure

$$\Z/{2}\Z \times \Z/{6}\Z$$

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(35148, -17574\right)$$, $$\left(43767, 2887029\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-70308, 35154\right)$$, $$\left(27192, 2472654\right)$$, $$\left(27192, -2499846\right)$$, $$\left(34992, 35154\right)$$, $$\left(34992, -70146\right)$$, $$\left(35148, -17574\right)$$, $$\left(35317, 35154\right)$$, $$\left(35317, -70471\right)$$, $$\left(43767, 2887029\right)$$, $$\left(43767, -2930796\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$19890$$ = $$2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$321758877739253906250000$$ = $$2^{4} \cdot 3^{10} \cdot 5^{12} \cdot 13^{6} \cdot 17^{2}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{7730680381889320597382223137569}{441370202660156250000}$$ = $$2^{-4} \cdot 3^{-4} \cdot 5^{-12} \cdot 7^{3} \cdot 13^{-6} \cdot 17^{-2} \cdot 31^{3} \cdot 157^{3} \cdot 580381^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$0$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$0.0726292685095$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$1152$$  = $$2\cdot2^{2}\cdot( 2^{2} \cdot 3 )\cdot( 2 \cdot 3 )\cdot2$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$12$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 19890.2.a.n

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q - q^{2} + q^{4} + q^{5} - 4q^{7} - q^{8} - q^{10} + q^{13} + 4q^{14} + q^{16} - q^{17} - 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 13271040 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L(E,1)$$ ≈ $$0.581034148076$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$3$$ $$4$$ $$I_4^{*}$$ Additive -1 2 10 4
$$5$$ $$12$$ $$I_{12}$$ Split multiplicative -1 1 12 12
$$13$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6
$$17$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by  and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs
$$3$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 13 17 nonsplit add split split nonsplit 6 - 1 1 0 0 - 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 19890.n consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{6}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
4 $$\Q(\sqrt{3}, \sqrt{17})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
$$\Q(\sqrt{39}, \sqrt{-51})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
$$\Q(\sqrt{-3}, \sqrt{13})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
6 6.0.236727913392.1 $$\Z/6\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.