Properties

Label 198744dm
Number of curves $2$
Conductor $198744$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 198744dm have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198744dm do not have complex multiplication.

Modular form 198744.2.a.dm

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} + 4 q^{11} + 2 q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 198744dm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198744.o1 198744dm1 \([0, -1, 0, -12224, -338820]\) \(119164/39\) \(66117861368832\) \([2]\) \(473088\) \(1.3550\) \(\Gamma_0(N)\)-optimal
198744.o2 198744dm2 \([0, -1, 0, 35096, -2364116]\) \(1409938/1521\) \(-5157193186768896\) \([2]\) \(946176\) \(1.7015\)