Properties

Label 198744bu
Number of curves $1$
Conductor $198744$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198744bu1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198744bu do not have complex multiplication.

Modular form 198744.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} + 4 q^{11} - q^{15} - q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198744bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198744.ba1 198744bu1 \([0, -1, 0, -28240, -1751231]\) \(159787264/6561\) \(102273011712144\) \([]\) \(709632\) \(1.4537\) \(\Gamma_0(N)\)-optimal