Properties

Label 198550ci
Number of curves $2$
Conductor $198550$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ci1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 198550ci have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198550ci do not have complex multiplication.

Modular form 198550.2.a.ci

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{7} - q^{8} - 3 q^{9} - q^{11} - 6 q^{13} - 2 q^{14} + q^{16} - 8 q^{17} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 198550ci

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198550.u2 198550ci1 \([1, -1, 0, -22672492, 84827518416]\) \(-14027163209613/25708190464\) \(-2362235291591169500000000\) \([2]\) \(41472000\) \(3.3669\) \(\Gamma_0(N)\)-optimal
198550.u1 198550ci2 \([1, -1, 0, -459482492, 3788539508416]\) \(116755936401534093/91080825616\) \(8369097037718921281250000\) \([2]\) \(82944000\) \(3.7134\)