Properties

Label 198550.j
Number of curves $4$
Conductor $198550$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 198550.j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198550.j do not have complex multiplication.

Modular form 198550.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} + 4 q^{7} - q^{8} + q^{9} + q^{11} - 2 q^{12} + 2 q^{13} - 4 q^{14} + q^{16} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 198550.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198550.j1 198550ca3 \([1, 0, 1, -11177651, 8859645198]\) \(210103680895849/75449000000\) \(55461948055765625000000\) \([2]\) \(22394880\) \(3.0649\)  
198550.j2 198550ca1 \([1, 0, 1, -4724776, -3952786302]\) \(15868125221689/2528900\) \(1858973882201562500\) \([2]\) \(7464960\) \(2.5156\) \(\Gamma_0(N)\)-optimal
198550.j3 198550ca2 \([1, 0, 1, -4273526, -4737961302]\) \(-11741970526489/6395335210\) \(-4701159050699531406250\) \([2]\) \(14929920\) \(2.8622\)  
198550.j4 198550ca4 \([1, 0, 1, 33947349, 62377895198]\) \(5885721311824151/5692551601000\) \(-4184548518859460640625000\) \([2]\) \(44789760\) \(3.4115\)