Properties

Label 198450.k
Number of curves $1$
Conductor $198450$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198450.k1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198450.k do not have complex multiplication.

Modular form 198450.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - 5 q^{11} + 4 q^{13} + q^{16} - 4 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198450.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198450.k1 198450fj1 \([1, -1, 0, -331242, 79660916]\) \(-41150864295/4194304\) \(-409677004800000000\) \([]\) \(3041280\) \(2.1193\) \(\Gamma_0(N)\)-optimal