Properties

Label 198198.fb
Number of curves $1$
Conductor $198198$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198198.fb1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198198.fb do not have complex multiplication.

Modular form 198198.2.a.fb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 4 q^{5} + q^{7} + q^{8} + 4 q^{10} + q^{13} + q^{14} + q^{16} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198198.fb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198198.fb1 198198bq1 \([1, -1, 1, -80326643, -277098850861]\) \(-649814892820023421163761/49636501684293888\) \(-4378386177069879566592\) \([]\) \(42964992\) \(3.2010\) \(\Gamma_0(N)\)-optimal