Properties

Label 19800o
Number of curves $4$
Conductor $19800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 19800o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19800o do not have complex multiplication.

Modular form 19800.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} + q^{11} - 6 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 19800o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19800.d3 19800o1 \([0, 0, 0, -1134450, -465078375]\) \(885956203616256/15125\) \(2756531250000\) \([2]\) \(221184\) \(1.9290\) \(\Gamma_0(N)\)-optimal
19800.d2 19800o2 \([0, 0, 0, -1135575, -464109750]\) \(55537159171536/228765625\) \(667080562500000000\) \([2, 2]\) \(442368\) \(2.2756\)  
19800.d1 19800o3 \([0, 0, 0, -1698075, 43827750]\) \(46424454082884/26794860125\) \(312535248498000000000\) \([2]\) \(884736\) \(2.6221\)  
19800.d4 19800o4 \([0, 0, 0, -591075, -910055250]\) \(-1957960715364/29541015625\) \(-344566406250000000000\) \([2]\) \(884736\) \(2.6221\)