Show commands: SageMath
Rank
The elliptic curves in class 19800o have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 19800o do not have complex multiplication.Modular form 19800.2.a.o
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 19800o
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 19800.d3 | 19800o1 | \([0, 0, 0, -1134450, -465078375]\) | \(885956203616256/15125\) | \(2756531250000\) | \([2]\) | \(221184\) | \(1.9290\) | \(\Gamma_0(N)\)-optimal |
| 19800.d2 | 19800o2 | \([0, 0, 0, -1135575, -464109750]\) | \(55537159171536/228765625\) | \(667080562500000000\) | \([2, 2]\) | \(442368\) | \(2.2756\) | |
| 19800.d1 | 19800o3 | \([0, 0, 0, -1698075, 43827750]\) | \(46424454082884/26794860125\) | \(312535248498000000000\) | \([2]\) | \(884736\) | \(2.6221\) | |
| 19800.d4 | 19800o4 | \([0, 0, 0, -591075, -910055250]\) | \(-1957960715364/29541015625\) | \(-344566406250000000000\) | \([2]\) | \(884736\) | \(2.6221\) |