Show commands: SageMath
Rank
The elliptic curves in class 19800.w have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 19800.w do not have complex multiplication.Modular form 19800.2.a.w
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 19800.w
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
19800.w1 | 19800bi3 | \([0, 0, 0, -11880075, -15760750250]\) | \(15897679904620804/2475\) | \(28868400000000\) | \([2]\) | \(393216\) | \(2.4294\) | |
19800.w2 | 19800bi5 | \([0, 0, 0, -6300075, 5969839750]\) | \(1185450336504002/26043266205\) | \(607537314030240000000\) | \([2]\) | \(786432\) | \(2.7760\) | |
19800.w3 | 19800bi4 | \([0, 0, 0, -855075, -166675250]\) | \(5927735656804/2401490025\) | \(28010979651600000000\) | \([2, 2]\) | \(393216\) | \(2.4294\) | |
19800.w4 | 19800bi2 | \([0, 0, 0, -742575, -246212750]\) | \(15529488955216/6125625\) | \(17862322500000000\) | \([2, 2]\) | \(196608\) | \(2.0828\) | |
19800.w5 | 19800bi1 | \([0, 0, 0, -39450, -5040875]\) | \(-37256083456/38671875\) | \(-7047949218750000\) | \([2]\) | \(98304\) | \(1.7363\) | \(\Gamma_0(N)\)-optimal |
19800.w6 | 19800bi6 | \([0, 0, 0, 2789925, -1212790250]\) | \(102949393183198/86815346805\) | \(-2025228410267040000000\) | \([2]\) | \(786432\) | \(2.7760\) |