Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-109235x+13896050\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-109235xz^2+13896050z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-109235x+13896050\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(169, 512)$ | $0.49807428562779166628178853338$ | $\infty$ |
| $(190, 20)$ | $2.0892813799371220747406269741$ | $\infty$ |
Integral points
\((-185,\pm 5270)\), \((169,\pm 512)\), \((190,\pm 20)\), \((191,\pm 6)\), \((295,\pm 2710)\), \((172201,\pm 71458304)\)
Invariants
| Conductor: | $N$ | = | \( 19600 \) | = | $2^{4} \cdot 5^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-205520896000$ | = | $-1 \cdot 2^{25} \cdot 5^{3} \cdot 7^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{5745702166029}{8192} \) | = | $-1 \cdot 2^{-13} \cdot 3^{3} \cdot 7 \cdot 3121^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4421797147834172261915177136$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.022354697939061272273203634928$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0876250170823247$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.696553487494886$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.0286128023652920854477002732$ |
|
| Real period: | $\Omega$ | ≈ | $0.85131354419583590967886111795$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.0053760830944616937292968706 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.005376083 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.851314 \cdot 1.028613 \cdot 8}{1^2} \\ & \approx 7.005376083\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 44928 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{17}^{*}$ | additive | -1 | 4 | 25 | 13 |
| $5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
| $7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $13$ | 13B | 13.14.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \), index $336$, genus $9$, and generators
$\left(\begin{array}{rr} 14 & 23 \\ 871 & 1431 \end{array}\right),\left(\begin{array}{rr} 1821 & 26 \\ 1833 & 339 \end{array}\right),\left(\begin{array}{rr} 2729 & 3614 \\ 2717 & 3301 \end{array}\right),\left(\begin{array}{rr} 5 & 26 \\ 1963 & 2491 \end{array}\right),\left(\begin{array}{rr} 3615 & 26 \\ 3614 & 27 \end{array}\right),\left(\begin{array}{rr} 2745 & 1846 \\ 3224 & 2289 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 26 & 1 \end{array}\right),\left(\begin{array}{rr} 1063 & 26 \\ 2080 & 3527 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3640])$ is a degree-$115935805440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 245 = 5 \cdot 7^{2} \) |
| $5$ | additive | $10$ | \( 784 = 2^{4} \cdot 7^{2} \) |
| $7$ | additive | $14$ | \( 400 = 2^{4} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
13.
Its isogeny class 19600.bx
consists of 2 curves linked by isogenies of
degree 13.
Twists
The minimal quadratic twist of this elliptic curve is 2450.j1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.1960.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.153664000.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/13\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ss | add | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2,2 | - | - | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | 0,0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.