# Properties

 Label 1960.n Number of curves $2$ Conductor $1960$ CM no Rank $0$ Graph # Related objects

Show commands: SageMath
E = EllipticCurve("n1")

E.isogeny_class()

## Elliptic curves in class 1960.n

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1960.n1 1960o2 $$[0, -1, 0, -240, 1100]$$ $$2185454/625$$ $$439040000$$ $$$$ $$768$$ $$0.36490$$
1960.n2 1960o1 $$[0, -1, 0, 40, 92]$$ $$19652/25$$ $$-8780800$$ $$$$ $$384$$ $$0.018322$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 1960.n have rank $$0$$.

## Complex multiplication

The elliptic curves in class 1960.n do not have complex multiplication.

## Modular form1960.2.a.n

sage: E.q_eigenform(10)

$$q + 2 q^{3} + q^{5} + q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} + 2 q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 