Properties

Label 1960.h
Number of curves $1$
Conductor $1960$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1960.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1960.h1 1960j1 \([0, 1, 0, -121, 475]\) \(-2249728/5\) \(-439040\) \([]\) \(384\) \(-0.034557\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1960.h1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1960.h do not have complex multiplication.

Modular form 1960.2.a.h

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2 q^{9} - 5 q^{11} + 7 q^{13} - q^{15} - 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display