Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-114x-127\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-114xz^2-127z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-9261x-64827\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{3}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(16, 49)$ | $0$ | $3$ |
Integral points
\((16,\pm 49)\)
Invariants
| Conductor: | $N$ | = | \( 196 \) | = | $2^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $92236816$ | = | $2^{4} \cdot 7^{8} $ |
|
| j-invariant: | $j$ | = | \( 1792 \) | = | $2^{8} \cdot 7$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.21861415198622039674399074368$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3097083409039702431319884591$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8915192755066496$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.89397430255579$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $1.5672749721048733828823104029$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 9 $ = $ 3\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.5672749721048733828823104029 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.567274972 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.567275 \cdot 1.000000 \cdot 9}{3^2} \\ & \approx 1.567274972\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 42 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $7$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cn | 4.4.0.2 |
| $3$ | 3B.1.1 | 9.24.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \), index $864$, genus $28$, and generators
$\left(\begin{array}{rr} 29 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 217 & 36 \\ 216 & 37 \end{array}\right),\left(\begin{array}{rr} 127 & 36 \\ 18 & 145 \end{array}\right),\left(\begin{array}{rr} 238 & 243 \\ 75 & 205 \end{array}\right),\left(\begin{array}{rr} 31 & 6 \\ 112 & 103 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 42 & 199 \end{array}\right)$.
The torsion field $K:=\Q(E[252])$ is a degree-$870912$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/252\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 49 = 7^{2} \) |
| $7$ | additive | $26$ | \( 4 = 2^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 196.b
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 196.a2, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | \(\Q(\zeta_{7})^+\) | \(\Z/2\Z \oplus \Z/6\Z\) | 3.3.49.1-64.1-a7 |
| $6$ | 6.0.1037232.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $9$ | 9.3.203297472.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
| $12$ | 12.4.1511207993344.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.1115906277282951168.1 | \(\Z/6\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
| $p$ | 2 | 3 | 7 |
|---|---|---|---|
| Reduction type | add | ord | add |
| $\lambda$-invariant(s) | - | 2 | - |
| $\mu$-invariant(s) | - | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.