Properties

Label 19536.c
Number of curves $4$
Conductor $19536$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 19536.c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19536.c do not have complex multiplication.

Modular form 19536.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} + q^{11} + 2 q^{13} + 2 q^{15} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 19536.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19536.c1 19536g3 \([0, -1, 0, -9455424, -11187867600]\) \(91299169320689012753668/443223\) \(453860352\) \([2]\) \(208896\) \(2.2216\)  
19536.c2 19536g4 \([0, -1, 0, -597624, -170517312]\) \(23051997945147370468/1045096649448093\) \(1070178969034847232\) \([4]\) \(208896\) \(2.2216\)  
19536.c3 19536g2 \([0, -1, 0, -590964, -174662496]\) \(89159486481392095312/196446627729\) \(50290336698624\) \([2, 2]\) \(104448\) \(1.8750\)  
19536.c4 19536g1 \([0, -1, 0, -36519, -2784546]\) \(-336645064644892672/16366468897251\) \(-261863502356016\) \([2]\) \(52224\) \(1.5285\) \(\Gamma_0(N)\)-optimal