Properties

Label 195195l
Number of curves $1$
Conductor $195195$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 195195l1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 195195l do not have complex multiplication.

Modular form 195195.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{5} - q^{6} - q^{7} + 3 q^{8} + q^{9} + q^{10} - q^{11} - q^{12} + q^{14} - q^{15} - q^{16} - 6 q^{17} - q^{18} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 195195l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
195195.i1 195195l1 \([1, 0, 0, -130946, 18227481]\) \(-1469311658474714041/5893965\) \(-996080085\) \([]\) \(744576\) \(1.3608\) \(\Gamma_0(N)\)-optimal