Properties

Label 195195bk
Number of curves $1$
Conductor $195195$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 195195bk1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 195195bk do not have complex multiplication.

Modular form 195195.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} - q^{5} + q^{7} + q^{9} - q^{11} + 2 q^{12} + q^{15} + 4 q^{16} - 4 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 195195bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
195195.r1 195195bk1 \([0, -1, 1, 1309, 66536]\) \(112818618368/947244375\) \(-2081095891875\) \([]\) \(269568\) \(1.0450\) \(\Gamma_0(N)\)-optimal