Properties

Label 195195.s
Number of curves $1$
Conductor $195195$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 195195.s1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 195195.s do not have complex multiplication.

Modular form 195195.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} - q^{5} + q^{7} + q^{9} + q^{11} + 2 q^{12} + q^{15} + 4 q^{16} + 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 195195.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
195195.s1 195195bj1 \([0, -1, 1, -372701, -30836518]\) \(200462500001480704/101509548958125\) \(2899214227793008125\) \([]\) \(3096576\) \(2.2351\) \(\Gamma_0(N)\)-optimal