Show commands: SageMath
Rank
The elliptic curves in class 194040.ds have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 194040.ds do not have complex multiplication.Modular form 194040.2.a.ds
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 194040.ds
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 194040.ds1 | 194040cx6 | \([0, 0, 0, -13417725027, -598227598487554]\) | \(1520949008089505953959842/278553515625\) | \(48927650869389600000000\) | \([2]\) | \(113246208\) | \(4.1895\) | |
| 194040.ds2 | 194040cx4 | \([0, 0, 0, -838693947, -9345290089786]\) | \(742879737792994384804/317817082130625\) | \(27912128841607292472960000\) | \([2, 2]\) | \(56623104\) | \(3.8430\) | |
| 194040.ds3 | 194040cx5 | \([0, 0, 0, -707716947, -12362973974386]\) | \(-223180773010681046402/246754509479287425\) | \(-43342186736222642762400614400\) | \([2]\) | \(113246208\) | \(4.1895\) | |
| 194040.ds4 | 194040cx2 | \([0, 0, 0, -60690567, -96852710374]\) | \(1125982298608534096/467044181552025\) | \(10254481353558257649926400\) | \([2, 2]\) | \(28311552\) | \(3.4964\) | |
| 194040.ds5 | 194040cx1 | \([0, 0, 0, -28407162, 57223068329]\) | \(1847444944806639616/38285567941005\) | \(52537674441311291065680\) | \([2]\) | \(14155776\) | \(3.1498\) | \(\Gamma_0(N)\)-optimal |
| 194040.ds6 | 194040cx3 | \([0, 0, 0, 200778333, -709265167954]\) | \(10191978981888338876/8372623608979245\) | \(-735321548324014707874452480\) | \([2]\) | \(56623104\) | \(3.8430\) |