Properties

Label 19360w
Number of curves $1$
Conductor $19360$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 19360w1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19360w do not have complex multiplication.

Modular form 19360.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{7} - 2 q^{9} + 2 q^{13} + q^{15} + 5 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 19360w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19360.w1 19360w1 \([0, 1, 0, -363040, -367477112]\) \(-5833944216008/60897409375\) \(-55236339430289600000\) \([]\) \(403200\) \(2.4703\) \(\Gamma_0(N)\)-optimal